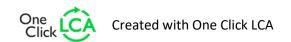


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

VIVA Wall Diffuser Climecon Oy

EPD HUB, HUB-2443

Publishing date 17 January 2025, last updated on 17 January 2025, valid until 16 January 2030.

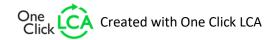
GENERAL INFORMATION

MANUFACTURER

Manufacturer	Climecon Oy
Address	Lämmittäjänkatu 4A, 00880 Helsinki, FINLAND
Contact details	info@climecon.fi
Website	https://climeconair.com/en-en/

EPD STANDARDS, SCOPE AND VERIFICATION

AND VERIFICATION
EPD Hub, hub@epdhub.com
EN 15804+A2:2019 and ISO 14025
EPD Hub Core PCR Version 1.1, 5 Dec 2023
Manufactured product
Third party verified EPD
-
Cradle to gate with options, A4-A5, and modules C1-C4, D
Emma Piha
Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☐ External verification
Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

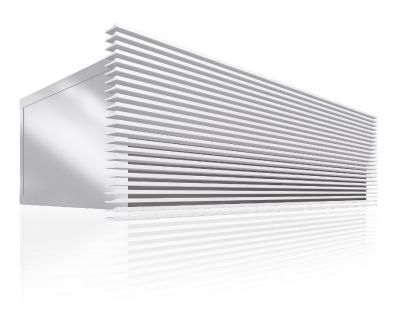

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	VIVA Wall Diffuser
Additional labels	VIVA-S, VIVA-F, VIVA-SL
Product reference	-
Place of production	Kausala, Finland
Period for data	Calendar year 2023
Averaging in EPD	Multiple products
Variation in GWP-fossil for A1-A3	+/- 4.65 %

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO₂e)	6,07E+00
GWP-total, A1-A3 (kgCO₂e)	5,83E+00
Secondary material, inputs (%)	8.92
Secondary material, outputs (%)	87.3
Total energy use, A1-A3 (kWh)	27.1
Net freshwater use, A1-A3 (m³)	0.05

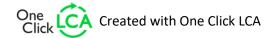


PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

We are Climecon, a responsible forerunner in indoor air design. With our indoor air design, we take a holistic approach to the well-being of people, buildings, and the environment. We design our solutions and products in a human-centric way, taking into account the perspective and needs of different users.

PRODUCT DESCRIPTION


This environmental product declaration covers the environmental impacts of VIVA wall diffusers manufactured by Climecon Oy in Kausala, Finland. VIVA is the embodiment of Nordic design with sleek, timeless appearance that is packed with functional features for top class performance. VIVA diffusers are a collection that has been designed by architects to combine visual look with Climecon's expertise in art-of-state ventilation in a completely unique way.

VIVA's unbeatable technical features are the result of uncompromising product development. They enable accurate and reliable indoor climate design. The streamlined VIVA design diffusers guarantee a finished look in any modern interior. The easily adaptable devices offer high-quality performance and are available for both supply and exhaust air.

VIVA can be attached to the duct from the side or from the back of the device. The existing ducting does not limit its suitability at renovation sites. VIVA suits also under temperature air and it can be used for cooling. Easily detached yet sturdy grille saves time and nerves during installation, adjustment and maintenance. The adjustable biocomposite nozzles enable a variety of throwpatterns and adapt to layout changes of the space throughout the entire lifecycle. The device can easily be placed in a corner since its throw pattern can be directed to side.

This EPD contains three products from VIVA collection that are available in duct sizes Ø100-200 mm.

• VIVA-S is a surface-mounted diffuser. VIVA-S mounting strip makes it easy to install long interior elements by combining the active and blind parts of the product.

- VIVA-F model is designed for flush mounting. The handy mounting frame will remain invisible after mounting and guarantees a finished look for the device.
- VIVA-SL is a grille without a plenum box, that is equipped with directed nozzles and a mounting frame. The device is suitable for a supply air terminal device. The visible part follows the streamlined design of the VIVA collection, and the nozzle plate is not visible from behind it.

Further information can be found at https://climeconair.com/en-en/.

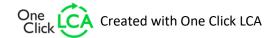
PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	95.7%	Finland
Minerals	-	-
Fossil materials	3.1%	Finland
Bio-based materials	1.2%	Finland

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0.0053
Biogenic carbon content in packaging, kg C	0.0670


FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg
Mass per declared unit	1 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0.1% (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

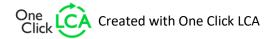
Pro	duct st	tage		mbly age			U	se sta	ge			E	nd of l	ife stag	Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4		D		
×	×	×	×	×	MND	MND	MND	MN	MN	MND	MND	×	×	×	×	×			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling	

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The hot dip galvanized steel sheets are transported to the Kausala production site, where they are cut to specified shapes and bent mechanically. The aluminium slats are manufactured by a subcontractor, and are then transported to Kausala. The steel frame is then welded together, which requires welding gas. All the metal parts are then powder-coated in Climecon's own painting line.


The final product is then assembled. Among the steel frame and aluminium slats, the final product includes biocomposite nozzles to adjust the airflow through the diffuser. The nozzles are also manufactured by a subcontractor and then transported to the Kausala production site. A wooden pallet, corrugated cardboard box, and packaging plastics are used as packaging material for transporting the product from the factory gate.

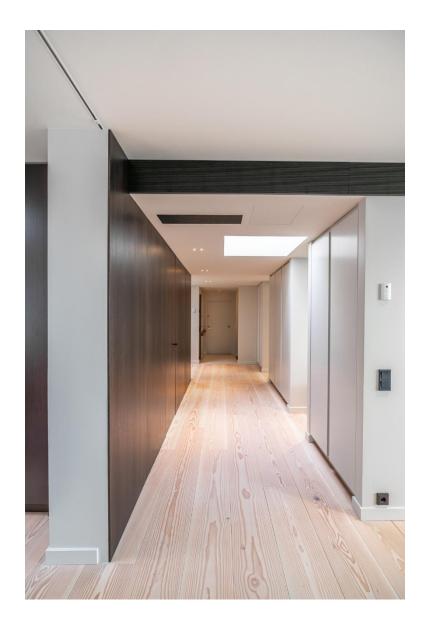
The manufacturing process requires electricity for the different equipment as well as district heating. Welding gas is also needed to mount the parts together. The steel waste produced at the plant is directed to recycling. The loss of material is considered, as well as wastewater treatments.

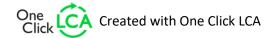
TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The average distance of transportation from the production plant to the building site is assumed to be 105 km, which is the distance between the production plant and Climecon's headquarters in Helsinki. The transportation method is assumed to be a lorry. Vehicle capacity is assumed to be 100%,

which means full load. In reality, it may vary, but as the role of transportation emissions in total results is small, the variety in load is assumed to be negligible. Transportation does not cause losses as products are packaged properly. Installation consumes 0.01 kWh of energy for assembling 1 kg of product. Treatment of packaging material waste (wood, steel, and plastic) is considered in this module. Moreover, direct emissions of carbon dioxide to the air are also considered to balance emissions of biogenic CO2.

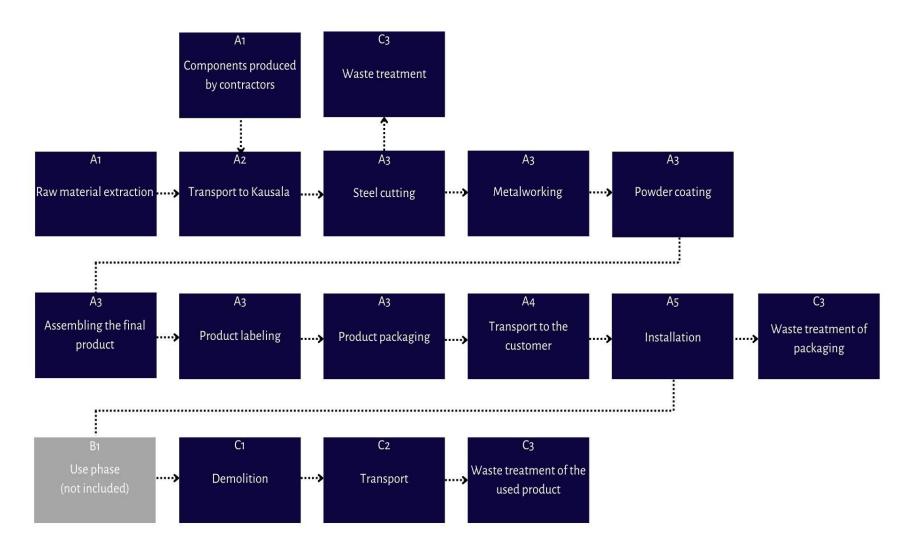

PRODUCT USE AND MAINTENANCE (B1-B7)

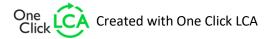

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

Demolition is assumed to consume 0,01 kWh/kg of product. The source of energy is diesel fuel used by construction machines (C1). It is assumed that 100% of the waste is collected and transported to the waste treatment center. The transportation distance to treatment is assumed to be 50 km, and the transportation method is assumed to be a lorry (C2). Approximately 85% of steel is assumed to be recycled, according to The World Steel Association (C3). 100% of the aluminium slats, 16% of biocomposite nozzles and 96% of corrugated cardboard are assumed to be recycled, according to Statistics Finland (C3). It is assumed that the remaining 15% of steel and the powder coating are taken to the landfill for final disposal (C4). Due to the recycling process, the end-of-life product is converted into recycled steel, while the majority of the wood (97%), plastic packaging (85%), biocomposite (84%), and 4% of corrugated cardboard are incinerated with energy recovery (D).





MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

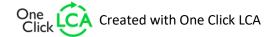
ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by revenue
Manufacturing energy and waste	Allocated by revenue

AVERAGES AND VARIABILITY

Type of average	Multiple products
Averaging method	Representative product
Variation in GWP-fossil for A1-A3	+/- 4.65 %

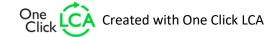

This environmental product declaration covers Climecon Oys VIVA product family manufactured in Kausala, Finland. The EPD contains three product variants (VIVA-S, VIVA-SL, and VIVA-F) in sizes Ø100-200. The products are available in matte black and matte white coating.

All of the product variants and sizes have the same manufacturing materials, process and locations. The differences occur only in the material composition which then alters slighty (maximum 4.6%) the GWP. The largest GWP-fossil A1-A3 is 6,24E+00 (VIVA-S 100), due to highest steel density of the product.

The EPD data can be scaled for different valve sizes by multiplying EPD result table by the mass of product.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.



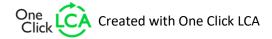
ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	5,65E+00	4,71E-02	1,33E-01	5,83E+00	1,19E-02	2,66E-01	MND	3,31E-03	7,05E-03	8,23E-02	6,66E-04	-1,39E+00						
GWP – fossil	kg CO₂e	5,64E+00	4,71E-02	3,85E-01	6,07E+00	1,19E-02	1,08E-02	MND	3,31E-03	7,05E-03	6,29E-02	6,66E-04	-1,17E+00						
GWP – biogenic	kg CO₂e	-1,93E-02	0,00E+00	-2,56E-01	-2,75E-01	0,00E+00	2,56E-01	MND	0,00E+00	0,00E+00	1,93E-02	0,00E+00	-2,21E-01						
GWP – LULUC	kg CO₂e	2,81E-02	1,74E-05	3,08E-03	3,12E-02	4,39E-06	2,52E-05	MND	3,30E-07	2,73E-06	2,15E-05	6,29E-07	-6,24E-04						
Ozone depletion pot.	kg CFC-11e	2,60E-07	1,08E-08	3,00E-08	3,01E-07	2,74E-09	5,86E-10	MND	7,07E-10	1,63E-09	1,75E-09	2,69E-10	-3,78E-08						
Acidification potential	mol H⁺e	2,70E-02	1,99E-04	2,14E-03	2,93E-02	5,04E-05	4,73E-05	MND	3,44E-05	2,89E-05	2,14E-04	6,26E-06	-6,23E-03						
EP-freshwater ²⁾	kg Pe	1,49E-04	3,86E-07	2,03E-05	1,70E-04	9,75E-08	1,61E-07	MND	1,10E-08	5,14E-08	7,96E-07	6,98E-09	-3,48E-05						
EP-marine	kg Ne	4,42E-03	5,93E-05	5,47E-04	5,02E-03	1,50E-05	1,80E-05	MND	1,52E-05	8,62E-06	5,83E-05	2,17E-06	-5,65E-04						
EP-terrestrial	mol Ne	4,64E-02	6,54E-04	5,97E-03	5,30E-02	1,65E-04	1,93E-04	MND	1,67E-04	9,50E-05	6,64E-04	2,38E-05	-1,25E-02						
POCP ("smog") ³)	kg NMVOCe	1,50E-02	2,09E-04	1,49E-03	1,67E-02	5,29E-05	4,95E-05	MND	4,59E-05	2,94E-05	1,68E-04	6,93E-06	-5,40E-03						
ADP-minerals & metals ⁴)	kg Sbe	3,46E-05	1,10E-07	2,55E-06	3,73E-05	2,79E-08	2,76E-08	MND	1,68E-09	2,30E-08	1,88E-06	1,53E-09	-2,80E-05						
ADP-fossil resources	MJ	6,46E+01	7,07E-01	1,03E+01	7,56E+01	1,79E-01	1,21E-01	MND	4,45E-02	1,05E-01	-2,49E-01	1,82E-02	-1,14E+01						
Water use ⁵⁾	m³e depr.	2,11E+00	3,17E-03	2,69E-01	2,38E+00	8,00E-04	1,41E-02	MND	1,20E-04	4,81E-04	3,60E-03	5,79E-05	9,07E-02						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	3,08E-07	5,43E-09	2,10E-08	3,34E-07	1,37E-09	6,63E-10	MND	9,22E-10	6,55E-10	2,49E-09	1,26E-10	-1,43E-07						
Ionizing radiation ⁶⁾	kBq 11235e	4,07E-01	3,37E-03	4,29E-01	8,39E-01	8,51E-04	3,94E-03	MND	2,05E-04	5,38E-04	9,63E-04	8,26E-05	-6,99E-02						
Ecotoxicity (freshwater)	CTUe	1,16E+02	6,36E-01	1,27E+01	1,29E+02	1,61E-01	1,91E-01	MND	2,68E-02	8,87E-02	9,27E-01	1,19E-02	-1,78E+01						
Human toxicity, cancer	CTUh	8,73E-09	1,56E-11	5,91E-10	9,34E-09	3,95E-12	1,14E-11	MND	1,03E-12	2,61E-12	2,53E-11	2,98E-13	4,44E-09						
Human tox. non-cancer	CTUh	1,25E-07	6,30E-10	7,13E-09	1,32E-07	1,59E-10	4,42E-10	MND	1,94E-11	8,95E-11	1,30E-09	7,79E-12	2,10E-08						
SQP ⁷⁾	-	1,33E+01	8,15E-01	3,15E+01	4,56E+01	2,06E-01	5,22E-02	MND	5,79E-03	8,45E-02	4,36E-01	3,90E-02	-4,07E+00						

⁶⁾ EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

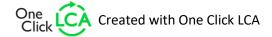
Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,26E+01	7,97E-03	1,02E+01	2,28E+01	2,01E-03	2,04E-02	MND	2,54E-04	1,43E-03	3,09E-02	1,58E-04	-1,76E+00						
Renew. PER as material	MJ	0,00E+00	0,00E+00	2,24E+00	2,24E+00	0,00E+00	-2,24E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,26E+01	7,97E-03	1,24E+01	2,50E+01	2,01E-03	-2,22E+00	MND	2,54E-04	1,43E-03	3,09E-02	1,58E-04	-1,76E+00						
Non-re. PER as energy	MJ	6,39E+01	7,08E-01	1,00E+01	7,46E+01	1,79E-01	1,21E-01	MND	4,45E-02	1,05E-01	-2,49E-01	1,83E-02	-1,15E+01						
Non-re. PER as material	MJ	7,07E-01	0,00E+00	2,01E-01	9,07E-01	0,00E+00	-2,01E-01	MND	0,00E+00	0,00E+00	-5,64E-01	-1,43E-01	0,00E+00						
Total use of non-re. PER	MJ	6,46E+01	7,08E-01	1,02E+01	7,55E+01	1,79E-01	-7,94E-02	MND	4,45E-02	1,05E-01	-8,13E-01	-1,25E-01	-1,15E+01						
Secondary materials	kg	8,92E-02	1,96E-04	2,97E-02	1,19E-01	4,96E-05	7,83E-05	MND	1,74E-05	3,38E-05	2,56E-04	3,84E-06	3,63E-01						
Renew. secondary fuels	MJ	1,09E-03	1,98E-06	6,83E-02	6,94E-02	5,01E-07	2,50E-07	MND	5,70E-08	3,66E-07	1,24E-05	1,00E-07	-2,46E-04						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	4,09E-02	9,16E-05	9,45E-03	5,04E-02	2,32E-05	3,71E-05	MND	2,70E-06	1,33E-05	9,71E-05	2,00E-05	-2,24E-02						

10

VIVA Wall Diffuser

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

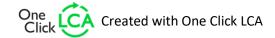

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	7,59E-01	9,38E-04	2,99E-02	7,90E-01	2,37E-04	2,38E-04	MND	5,96E-05	1,23E-04	2,49E-03	0,00E+00	-4,55E-01						
Non-hazardous waste	kg	6,20E+00	1,54E-02	5,96E-01	6,82E+00	3,89E-03	1,89E-01	MND	4,19E-04	2,14E-03	4,22E-02	1,26E-01	-2,78E+00						
Radioactive waste	kg	1,76E-04	4,73E-06	9,72E-05	2,78E-04	1,20E-06	9,39E-07	MND	3,13E-07	7,18E-07	1,11E-06	0,00E+00	-2,31E-05						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	3,41E+00	3,41E+00	0,00E+00	2,49E-02	MND	0,00E+00	0,00E+00	8,49E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,83E-01	MND	0,00E+00	0,00E+00	2,41E-02	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,45E+00	MND	0,00E+00	0,00E+00	8,36E-01	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	5,58E+00	4,66E-02	3,82E-01	6,01E+00	1,18E-02	1,10E-02	MND	3,27E-03	6,98E-03	6,34E-02	6,52E-04	-1,09E+00						
Ozone depletion Pot.	kg CFC-11e	2,36E-07	8,58E-09	2,73E-08	2,72E-07	2,17E-09	4,92E-10	MND	5,60E-10	1,29E-09	1,37E-09	2,13E-10	-4,31E-08						
Acidification	kg SO₂e	2,25E-02	1,55E-04	1,64E-03	2,43E-02	3,92E-05	3,50E-05	MND	2,45E-05	2,24E-05	1,66E-04	4,73E-06	-5,15E-03						
Eutrophication	kg PO ₄ ³e	6,89E-03	3,53E-05	7,79E-04	7,71E-03	8,92E-06	3,40E-05	MND	5,69E-06	5,10E-06	7,72E-05	1,02E-06	-1,98E-03						
POCP ("smog")	kg C ₂ H ₄ e	2,01E-03	6,05E-06	1,01E-04	2,11E-03	1,53E-06	1,56E-06	MND	5,36E-07	9,09E-07	3,46E-06	1,98E-07	-6,27E-04						
ADP-elements	kg Sbe	3,35E-05	1,07E-07	2,51E-06	3,61E-05	2,70E-08	2,66E-08	MND	1,65E-09	2,25E-08	1,88E-06	1,51E-09	-2,79E-05						
ADP-fossil	MJ	6,46E+01	7,07E-01	9,80E+00	7,51E+01	1,79E-01	1,17E-01	MND	4,45E-02	1,05E-01	-2,43E-01	1,82E-02	-1,14E+01						



ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	5,67E+00	4,71E-02	3,88E-01	6,10E+00	1,19E-02	1,08E-02	MND	3,31E-03	7,05E-03	6,29E-02	6,66E-04	-1,17E+00						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

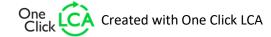
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

17.01.2025

